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Abstract - This work is an extension of the previously published work dealing with the effects of mass, 
momentum and thermal variations on the dynamics of vapor-gas bubbles moving through a dilute two- 
component solution of the gas in a liquid and subjected to various liquid pressure and temperature transients. 
In particular, the cases of a bubble flowing with a liquid through a channel with a linear temperature rise and 
pressure drop (a normal heated channel), a channel with a linear temperature drop (a heat exchanger), and a 
channel experiencing a sudden pressure drop with an increasing temperature (a ‘blocked’ heated channel) are 
all being studied. Specific numerical results were obtained for several types of inert gases in liquid sodium for 

the case of a normal ‘heated channel. 
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NOMENCLATURE 

mass concentration of inert gas in the 
solution ; 
value of CA far away from the bubble and 
given by equation (15); 
saturation value of CA at bubble interface; 
constant pressure specific heat of liquid- 
gas solution ; 
diffusion coefficient of inert gas in liquid- 
gas solution ; 
hydraulic diameter of heated channel ; 
hydraulic diameter of heat exchanger ; 
integral defined in equation (13); 
dimensionless Henry’s coefficient, 

K,[T@)]/&(T,); 

Henry’s coefficient ; 
length of heated channel; 
mass of inert gas in bubble; 
molecular weight of inert gas; 
molecular weight of liquid; 
partial pressure of inert gas inside the 
bubble ; 
partial pressure of inert gas in the gas 
blanket ; 
constant liquid pressure inside heat 
exchanger ; 
liquid pressure; 
liquid pressure after flow blockage; 
partial pressure of vapor inside the bubble; 
initial liquid pressure, ~~(0); 
heat exchanger heat flux ; 
heated channel heat flux ; 
radial coordinate; 
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bubble radius; 
liquid Reynolds number, uDH/v; 
initial bubble radius, R(0); 
universal gas constant; 
dimensionless surface tension, 

2fl[T@)]/P,, ; 

time ; 
transit time before the flow blockage, L/u; 
temperature inside the bubble (3 TL); 
heat exchanger inlet temperature; 
liquid temperature; 
initial liquid temperature, T,(O) ; 
temperature of plenum and gas blanket; 
liquid velocity; 
axial coordinate; 
mole fraction of inert gas. 

Greek symbols 

dimensionless parameter, R~p,,/p,.@,; 

parameter, (R’RO/MA)J(~A~II); 
dimensionless parameter, 

4q”xR’Ri KH(LUMBC~DH~~AB; 

dimensionless parameter, 

U3R&'d2~~~P~~D~; 

dimensionless parameter, 

~~,R'R~KH(T~)IMBc~DH~AB; 

liquid pressure drop across heated 
channel ; 
dimensionless radial coordinate, (r/R) - 1; 
dimensionless liquid temperature, 

IIP~R’K~(W/WJ T(r); 
dimensionless heat exchanger inlet 

perature, [P~R’K~(TJM,J T,,.,; 
dimensionless heating channel 
temperature, 

[PBR’WT,)/MBI To; 

inlet 

friction factor = 0.0032 + 0.221/Re”.237 ; 
liquid kinematic viscosity; 
dimensionless inert gas pressure, pA(t)/pAr ; 
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dimensionless heat exchanger pressure, 

PHxIPAz ; 

dimensionless liquid pressure, pt(t)/pAl ; 
dimensionless liquid pressure after flow 

blockage, ?%..b/PR X ; 
dimensionless initial liquid pressure, 

PLO/PA-I ; 

dimensionless vapor pressure, 

P,EWl/PA * ; 
liquid density; 
surface tension ; 
dimensionless time, (L@,&R$L/u; 
dimensionless transit time before the flow 
blockage ; 
dimensionless concentration function, 

(rlRC,o)[C,(r, r) - C,,l ; 
dimensionless saturated concentration 
function, 

[C,&) - c,401/c.40; 
dimensionless bubble radius, R(t)/R,. 

Subscripts 

‘4, inert gas ; 
0, initial or inlet value; 

.s, saturation value; 
?f , in the plenum or gas blanket. 

INTRODUCTION 

THE RATE of growth or collapse of a bubble of vapor in 
its liquid has long been an important engineering 
subject receiving considerable analytical and experi- 
mental attention. The practical applications of the 
results of this effort are numerous in such areas as 
boiling and condensing fluids. Mathematical treat- 
ments of the situation with varying degrees of com- 
pleteness, and applied to a wide variety of specialized 
problems, date back to the early work of Rayleigh [ 11, 
and refinements are in current progress, for example, 
the recent work of Jones and Zuber [2]. The math- 
ematical sophistication employed in the various 
analyses was often dictated by the forcing functions of 
the problems studied and by the magnitude of the 
time-rate-of-change of those functions. 

An important complication to the mathematical 
prediction of bubble dynamics is introduced when a 
noncondensible inert gas is present in fluid. The 
analytical treatment of one class of such problems by 
Epstein and Plesset [3] IS widely regarded as classical. 
This solution neglects the importance of several physi- 
cal phenomena, and as a result. it applies to certain 
problems wherein the rate-of-change of the forcing 
function (the rate of the transient) is relatively small. 

Recently, the need to analyze certain postulated off- 
normal operating conditions and consequences in a 
nuclear electric-power reactor prompted the develop- 
ment of an analysis that is applicable to a variety of 
situations in the fast-transient class [4-71. The physi- 
cal problem treated in this analysis was a bubble of 
inert gas and vapor in a solution ofliquid and inert gas. 

The bubble growth or coflapse was governed by the 
time-rate-of-change of parameters in the liquid-gas 
solution. These parameter transients were the forcing 
functions for the problem and their rates were rel- 
atively fast. The following physical phenomena were 
modelled in the analysis of the problem 

(a) mass transfer of inert gas through the bubble 
boundary; 

(b) compressibility of mass inside the bubble; 
(c) diffusion of inert gas in the liquid-gas solution; 
(d) inertia of liquiddgas solution ; 
(e) viscosity of liquid-gas solution; and 
( f f surface tension at the bubble boundary. 

The inclusion of all of these effects led to a set of 
second-order nonlinear ordinary differential equa- 
tions. The solution yielded predictions of the bubble 
growth and collapse rates, gas pressure, and bubble 
mass under conditions varying from quasi-steady to 
fast transient conditions (e.g. 3300 “C s- *). The exten- 
sive nature of the mathematical formulation made it 
equally applicable to inertia-controlled and heat- 
transfer-controlled growth regions as well as to sit- 
uations not dominated by either of these effects. 
However, as in most analyses of this nature, some 
assumptions and exclusions were still incorporated 
into the model, or allowed by the particular problem 
for which a solution was sought. 

The analysis described in [4, 51 has three major 
items included in it which limit its generality and thus 
restricts the application of this relatively extensive 
work. Two of these items are related to the treatment of 
the species continuity equation for inert gas in the 
liquid-gas solution which govern the diffusion of gas 
in that solution. First, the convection of inert gas in the 
liquid-gas solution was neglected, which reduced the 
species continuity equation to a linear second-order 
partiai differential equation. Second, a closed-form 
solution was obtained to the resulting equation which 
neglected an integral term that was later shown to be of 
some importance in certain situations [8]. These two 
assumptions have generally been incorporated into 
prior less extensive analyses, although the basis for 
them is based more on physical arguments than on 
mathematical comparisons of the terms in the govern- 
ing equation. 

The third major assumption employed in the ana- 
lysis of [4, 51 was related to the importance of the 
temperature gradient in the liquid-gas solution. It was 
assumed that neglecting the gradient would have a 
small effect on the results, and consequently, a very 
simple form of the energy equation was employed. 

It is the objective of the current work to extend the 
analysis of [4, S] to make it applicable to a much larger 
class of problems. This objective will be accomplished 
by replacing the three major assumptions discussed 
above by more vigorous mathematical models. 

The extension will be done in three parts. This first 
part involves the inclusion of the integral term pre- 
viously neglected. The resulting differential equations 



remain ordinary, nonlinear, and of second-order. The 
method of solution previously used [4, SJ still applies 
and new pr~ictions were obtained in relatively short 
order. Specific numerical results were obtained for 
several types of inert gases in liquid sodium during 
various liquid pressure and temperature transients. In 
particular, the cases of a bubble flowing with a liquid 
through a channel with a linear temperature rise and 
pressure drop (a normal heated channel), a channel 
with a linear temperature drop (a heat exchanger), and 
a channel experiencing a sudden pressure drop with an 
increasing temperature (a ‘blocked’ heated channel) 
were all studied. 
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where the assumptions of [4, 5J have been invoked. 
The initial and boundary conditions consistent with 
these assumptions are 

t=O: CA=CAO (2) 
r = R: C, = C,,(t) (3) 

r+x:CA-+CAO- (4) 

A simple transformation of the coordinate system 
permits the reduction of the problem to one which is 
well known 

34 824 .-=_ 
as a'f2 (5) 

5=0: c$(q,O)=O (6) 

1 = 0: w, 7) = rp,(7) (7) 

tf-+ r-:4(~,7)--ro (8) 

where 

?j = f - I,7 = 9&/R2, #(q,z) 1 
= _.!I-- [CA@, t) - CA01 

RCA, 
(9) 

and 

The second part will treat the entire species con- 
tinuity equation vigorously. The resulting equations 
will be an order of magnitude more complex since the 
species continuity equation will become a partial 
differential equation. It may be solved with the other 
ordinary integrated differential equations and/or with 
the other conservation equations in their original 
partial differential form. 

Finaliy, the third part will involve the formulation of 
a more complete energy equation, including the effect 
of temperature gradients in the liquid-gas solution. 
The equations will again be partial differential. It 
should be noted that the solution of the governing 
equations developed in parts 2 and 3 will require the 
formulation of a new numerical computer code signi- 
ficantly different from the previous code [4, 51. 

The results of each successive step of the analysis 
development will provide a more comprehensive mod- 
el than the previous work or step. The inclusion of the 
various physical effects will allow more confident 
application of the analysis to a greater variety of 
engineering problems. The analysis in all of the various 
stages will still apply to inertia and heat-transfer- 
dominated regimes of bubble growth and will preclude 
the necessity to use more specialized models for 
individual problems. 

#J,(T) = 
C,,(t) - CA0 

C i 
A0 

and has the solution which can be expressed in either of 
the following forms 

or 

(lob) 

PHYSICAL AND ~ATHEMA~CAL MODELS 

Consider a spherical gas bubble of radius R. which 
at time t = 0 is placed into a liquid-gas solution. Its 
temperature, pressure, dissolved gas concentration, 
and the concentration of the gas for a saturated 
solution are equai to To, pLOt CA*, and C.*%, re- 
spectively. At time t > 0, the liquid pressure and 
temperature are allowed to vary; this variation will 
have a considerable effect on the behavior of the 
bubble due to several factors, among which are the 
temperature dependence of the gas solubility and the 
vapor pressure, the changing pressure differences 
across the bubble-soIution interface, etc. 

It should be noted that equations (lOa) and (lob) do 
not by themselves specify the concentration field; the 
saturation function is dependent upon the liquid 
temperature and the gas partial pressure in the bubble. 
Thus, additional relationships must,be found to com- 
pletely specify the problem. One such relationship can 
be obtained from an overall mass balance on the 
bubble, noting that the rate of change of mass of gas in 
the bubble equals the rate of transport of gas through 
the bubble-liquid interface, or 

If the center of the gas bubble is assumed to be 
stationary and taken as the origin of a spherical 
coordinate system, the mass conservation equation for 
species A diffusing through a solution of A and B may 
be written as 

dmA -----_ 
dt (11) 

Assuming that the gas in the bubble behaves ideally 
permits mA to be expressed as 

4nM,p,R3 
mA = 

3R’ T 

where the tem~rature of the gas has been taken equal 
to the liquid temperature. The radial gradient of CA 

r- or \ or I can be obtained from equations (9) and (10). It is 
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convenient to use equation (lob) for that purpose. Let 

I = r i &(t - R)F*~44” 

,O 
j.3,2 

Then 

(:I,=, = ii:.),.. 

and using integration by parts 

or in terms of physical variables, the radial gradient of 
CA at the bubble surface becomes 

where 

cA,(o) - cAO J 

+ J( nPA,t) + R &~i,,)_ 1 
(13) 

s liR’ 

J= 
G,(r) dr 

,, (t/R2 - r)l” 

and in which C;,(T) represents the derivative of CAS 
with respect to T. The integral J was not included in the 
analysis of [4,5] on the grounds of physical reasoning. 
Its probable importance in such diffusional processes 
as the bubble growth/collapse in time-dependent 
pressure fields has been pointed out by Cha and Henry 

[91. 
Prior to substituting equation (13) into (ll), the 

saturation concentration, C,,(t), can be related to the 
partial pressure of the gas in the bubble, pa(t), by the 
assumption of mass equilibrium at the bubble-liquid 
interface. The equilibrium condition, as expressed by 
Henry’s law, may be expressed as 

If it is further assumed that far from the bubble there 
exists a gas phase with a gas partial pressure of pa T, 

and a temperature of T,, and initially, the liquid 
solution is in mass equilibrium with this phase, then 
the concentratton CA0 may be expressed as 

(15) 

Therefore, the overall mass balance, equation (1 l), 
can finally be written as follows, using equations 

(12)-(15) 

*This form was chosen since the function K,(T) was 
measured as x,/p, in [lo] and [ 111. and had the form log K, 
= a + h/T. 

(16) 

This equation gives one relationship between the 
bubble radius, R, and the gas pressure in the bubble, 
pA. The second required relation can be obtained from 
the continuity and momentum conservation equations 
for the liquid solution. For an incompressible liquid 
with no body forces or external temperature effects, it 
can be shown [12] that these conservation equations 
can be reduced to the form 

Finally, initial conditions of pa and R must be 
specified. By assuming that the initial state of the 
bubble is one that is in mechanical equilibrium with 
the liquid solution, it follows that 

WTo) 
PA(O) = Pdo) - p,.(To) + _ (18) 

Ko 

and 

,zO = 
0. (19) 

Coupled with the statement that 

R(0) = R. (20) 

the problem is completely defined by equations 
(16)-(20), with the functions K,(T), p,(T), o(T), and 
p,.(t) arbitrarily specified. 

Prior to a consideration of specific transients in 
liquid pressure, p,.(t), and temperature, T(t), the defin- 
ing equations will be cast into a nondimensional form 
for ease in subsequent numerical calculations. If the 
following definitions are applied 

cFABt 

==x’ Q(t) = F, 
0 

(21) 

I-I(t) = $, e(r) = 
PRR’KIAT, ‘1 T(t) 

1 

M 
R 

the governing equations, (16)-(20), with some manipu- 
lation, become 

-3n[K(r)n - 1) 

- $ [K(O)“, - l] - 3yQJ (22) 
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r=O:i2(0)= 1 (24) 

da 
-= 
dr 

0 

l-I(O) = II,(O) - n”(0) + S(0) = l-I, 

where (26) 

K(7)= KY[ww~H(~*) 
n”(7)= P”mmP.4 cc 

K(7) = P&)/P” 1 

> 

(27) 

S(7) = 247IOl/PA T 

An examination of the several terms in equation (22) 
reveals the three coupled processes that act to change 
the dimensionless inert gas partial pressure in the 
bubble. The first term on the right-hand side of this 
equation represents the resultant decrease in gas 
pressure with expansion of the bubble; the second 
term represents the increase in gas pressure with gas 
temperature ; and the third term represents the change 
in gas pressure associated with the transport of gas 
between the bubble and the liquid solution. A number 
of interesting possibilities may be inferred from equa- 
tions (22) and (23); mostly arising from the non- 
isothermal condition. For example, it may be possible 
for inert gas to diffuse out from the bubble, yet to still 
have significant bubble growth if the rate of rise of 
temperature is sufficiently rapid. The reverse also 
holds. Changes in the liquid pressure can also override 
diffusional effects. 

fn this paper, several separate cases of liquid tem- 
perature and pressure variations will be considered, 
covering the most commonly found in liquid metal 
circuits. 

Case 1. Gas bubble in a heat exchanger 
As discussed by Holtz [ 133, a liquid meta: in a circuit 

can become supersaturated with respect to dissolved 
gas as the liquid temperature is decreased, if the gas 
blanket-liquid interface is in a relatively hot section of 
the circuit. The heat exchanger of many designs of 
liquid metal loops and liquid metal cooled reactors 
provide just such a decreasing liquid temperature 
condition. Assuming that suitable nucleation sites 
exist in the heat exchanger, it is quite probable that 
inert gas bubbles will be formed ; the actual conditions 
of temperature and concentration required for this 
formation have been discussed in [13]. For the 
purpose of this paper, it will be assumed that bubbles 
do form in a heat exchanger, and the history of these 

bubbles as they travel through this decreasing tem- 
perature field at essentially constant liquid pressure 
will be examined. 

The one-dimensional liquid temperature profile in a 
uniformly cooled channel can be easily obtained from 
an energy balance as 

TL.(x) = TL(0) - 
4%r*x 

PBUC,DH~ ’ 
(28) 

Ifthe bubble travels with the liquid at the velocity u (i.e. 
no interfacial slip), the bubble experiences a tempera- 
ture drop equivalent to 

T(r) = THx. o - (4Gx/P&Dnx)f. (29) 

Assuming that the liquid pressure remains constant at 
a value of pHx, the non-dimensional temperature and 
pressure functions [from equations (21) and (27)] 
become 

where 

O(7) = @Hr. 0 - YHx. T 7 (30) 

H,(7) = nHx (31) 

OHI. o = (PE/MB)R’KH(T,) TH,. o 1 
YHx. T = ~~,,R’R~KH(T,)IMBc~DH~~;AB 

nHx = PdP.4 X’ 

(32) 

Case 2. Gas bubble in a heated channel with liquid 
pressure drop 

In this case, the temperature and liquid pressure 
variation associated with the flow of a liquid with an 
entrained gas bubble through a heated channel will be 
considered. As in the previous case, a one-dimensional 
approximation will be made, resulting in the following 
dimensionless temperature and liquid pressure func- 
tions 

e(7) = e. + y,7 (33) 

b.(7) = nL0 - Yp7 (34) 

where the symbols are defined in the Nomenclature. 

Case 3. Heated channel with sudden ,jlow blockage 
A situation that is of some interest in the safety 

analyses of liquid metal cooled, fast breeder reactors is 
that of an instantaneous, complete blockage of a 
coolant flow channel with continued heating. In this 
case, at the instant of blockage, the liquid pressure will 
drop to the value in the gas plenum (plus the liquid 
head), and the static liquid will continue to be heated. 
Thus, the temperature and pressure field experienced 
by a bubble that enters the channel at time zero and 
reaches the end of the heated section at the instant of 
flow blockage (at time t8 = L/u) will be 

4%vr 
T(0) + ___ o<t<t, 

T(r) = 
PC~DH 

“_ _ (35) 
T(t,) + ‘4wr 

P@H 
t > t, 
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p,.(r) = 
i 

UAfpf 
p,.(O) - --i--- 0 < : < t* 

_ 

Equation (35) may be simply rewritten as 

7-(f) zz T(O) + -%!- t > 0. 
PC’, D,, 

(37) 

In terms of the dimensionless parameters, equations 
(37) and (36) become 

U(t) = 0, + y,r Z > 0 (38) 

K(r) = 
I&* - ypt 0 < r < TJj 

n (39) 
L.6 T’ TB 

where the symbols are defined in the Nomenclature. 

APPLICATIONS AND DISCUSSION OF RESULTS 

The rate ofdischarge of water from the accumulator 
of the emergency core cooling system (ECCS) of a light 
water reactor under abnormal reactor conditions may 
be affected in various degrees by the presence of inert 
gas bubbles in the water. The bubbles are produced as 
a result of the depressurization of the accumulator 
which is initially saturated with nitrogen gas. The effect 
of the bubbles flowing with the liquid through the 
nozzle into the core is to decrease the rate of supply of 
coolant. The theory presented in this paper will 
provide an effective tool for analyzing this problem 
and related experimental investigations. 

It is difficult in many instances to predetermine the 
magnitudes of all of the physical phenomena that 
would affect the bubble dynamics in any given prob- 
lem. The case of transients further complicates this 
situation, especially as the rate of the transient be- 
comes large. Such is the case of the ECCS blowdown 
when the water pressure in the accumulator is rapidly 
reduced by approximately 4 MPa. It was noted by Cha 
and Henry [14] that bubble growth rates estimated 
from constant pressure predictions differed drastically 
from experimental results obtained during a fast 
depressurization. The effects of other physical para- 
meters are equally difficult to estimate. Thus, an 
extensive analysis was required to gain confidence that 
an important effect has not been neglected. The theory 
presented in this paper will provide such an analysis. 

The study of bubble dynamics has important apph- 
cation to liquid metal fast breeder reactor (LMFBR) 
normal and abnormal operation [4-73. Argon gas 
bubbles appear in the sodium as a result of cooling the 
hot plenum sodium, saturated with argon gas, in the 
intermediate heat exchanger (IHX). The growth or 
collapse of these bubbles in the reactor core during 
rapid transient conditions is an important consider- 
ation affecting the incipient boiling superheat of the 
sodium and the related safety implications [13]. 
Considerable experimental and analytical effort has 
been given to this problem. The analysis of [4-71 was 
developed particularly for it and the results to date 

indicate a safe situation. This paper extends that 
analysis and provides a more comprehensive analyti- 
cal basis in support of this important work. 

Last but not least, it should be pointed out that the 
general theory presented here could very well be used 
for verifying many other less complete models that 
have been developed for more specific applications, 
Recent investigations which might usefully employ the 
present theory for this purpose include: bubble growth 
in variable pressure field work of [2], bubble dissol- 
ution studies of [15], cavitation studies of [lo], and 
others. 

To demonstrate the application of the theory de- 
veloped in this paper, one must solve equations 
(21)-(27) for specified liquid temperature and pressure 
variations. An example chosen was that of gas bubbles 
traveling in a heated channel with liquid pressure drop, 
equations (33) and (34), as described under irase 2 in 
the paper. The above nonlinear system of equations 
could not be solved analytically; therefore, a numeri- 
cal integration technique known as the fourth-order 
Runge-Kutta method was used. 

NumericaI results were obtained for four com- 
binations of inert-gas-s~ium systems - 
argon-sodium, helium-sodium, krypton-sodium and 
xenon-sodium, since this is of most practical interest 
for fast breeder reactors (LMFBR). The importance of 
the argon-sodium system has been sufficiently well 
outlined in [4-51. It should be noted, however, that if 
the fuel is vented, the primary fission gas in the gas 
blanket will be krypton. But if the fuel is not vented, the 
krypton will be converted to various xenon isotopes. 
Also, as pointed out in 117-J the use of helium in place 
of argon as an inert cover gas is often preferred, when 
taking into account various design considerations. 
Thus, the reasons for selecting Ar-Na, He-Na, Kr-Na 
and Xe-Na combinations for the numerical studies 
reported here are justified. 

Since the numerical calculations require the values 
for the Henry’s coefficient I(, and the values for the 
diffusion coefficient sAB, references [lo] and [ 1 I] were 
used for providing that information. Sodium proper- 
ties were calculated according to [ 181. All results were 
obtained for the behavior of inert gas bubbles as they 
pass through an LMFBR operating conditions as 
summarized in Table 1. These computed results are 
presented graphicaily in Figs. I-3. Figure I ihustrates 
the behavior of various initial-sized bubbles as they 
pass through a heated channel. It is interesting to note 

Table 1. Operating conditions 

Parameter Value 

DN 3.075 mm 
L 914.4 mm 

PAZ 101.3 kPa 
PI.% 101.3 kPa 
T, 316 “C 
TX 471 “C 
u 5.18 ms-’ 
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that all bubbles (involving various inert gases) will 
survive the transit through such a channel. Further- 
more, the growth rate in a!! cases is very small. 

The variation of the parttal pressures of inert gases 
inside the various-sized bubbles with transit time 
through the channel is plotted in Fig. 2. One notes by 
examining that figure that for a given initial-sized 
bubble, the variation of pA with time is independent of 
the kind ofinert gas under study and that in all cases pR 

decreases with increasing transit time. Furthermore, 
these variations could be very closely fitted with 
straight lines, the slopes of which being independent of 
inert gases or initial radii &,. The only exception is 
helium, which, for R, = lOpm, deviates slightly from 
the above observed behavior. 

Finally, Fig. 3 presents the fractional increases in 
mass of inert gases inside the bubble as they traverse 
the heated channel, for R,, = 1OOO~m. As expected by 
reference to Fig. 1, all curves rise with time and with 
approximately the same rate. 
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DYNAMIQUE DES BULLES DE GAZ INERTE DANS DES SYSTEMES DE CONVECTION 
FORCEE 

R&rmi--Cet article est une extension dune publication traitant des effets des variations de masse, de 
quantitt de mouvement et d’energie sur la dynamique des bulles de vapeur-gaz se dtplacant a travers une 
solution a deux composants de gaz dans un liquide et soumise a des evolutions de pression et de temperature 
du hqui&. On ttndii ~~~~t un &oukment de tiquide avec h&a dans: un canal aver une &vation 
hniaire de temperature et une chute de pression (un canal normalement chauffe); un canal avec une chute de 

temperature lineaire (un echangeur de chaleur); un canal subissant une soudaine chute de pression avec un 
accroissement de tem~rature (un canal chauffe et bloque). Des resultats mun~riques sont obtenus pour 

differents types de gaz inertes dans le sodium liquide pour le cas dun canal normal chauffe. 

DIE DYNAM~K VON INERTGASBLASEN IN SYSTEMEN MIT 
ERZWUNGENER KONVEKTION 

~~mmenf~uug-Die~ A&it ist eine Erweiterung einer vorausgegangenen Ver~ffentIjchung iiber den 
EinfluR von Massen-, lmpuls- und thermischen Anderungen auf die Dynamik von Dampf-Gas-Blasen in 
einer ver&nnten Zweikomponentenlosung des Gases in einer Fliissigkeit bei verschiedenen instationaren 
Druck- und Temperaturverlaufen in der Flussigkeit. Fur eine mit einer Fliissigkeit stromende Blase werden 
insbesondere folgende Fslle untersucht : ein Kanal mit linearem Tem~raturanstieg und Druckabfall 
(normal beheizter Kanal), ein Kanal mit linearem Temperaturabfall (Warmetauscher) und ein Kanal bei 
plotzlichem Druckabfall und tunehmender Temperatut (“bloekierter” beheizter Kanal). Fur verschiedene 
Inertgas-Ty~n in fltissigem Natrium werden fur den Fall eines normal beheizten Kanals numer~sche 

Ergebnisse mitgeteilt. 

AMHAMMKA HY3bIPbKOB MHEPTHblX I-ASOB 3 CMCTEMAX C BbiHY~~EH~O~ 
KOHBEKHMEH 

AnaoTau~n - npWJEWaeMaR CTaTbR RBJI51eTCll npO~Ofl~eH~eM piee Or~y6~~~OBaHHO~ p6OTbl 110 

WCCJWIOB~NWO BJtNItHWB H3MeHeHWII MaCCbt. HMnyJibCd W TeMnepaTypbl Ha IlHHaMHKy napO-ra3OBbIX 

ny3bIpbKOB, nBWKymHXCB B pa36aBJteHHOM nByXKOMnOHeHTHOM PaCTBOpe t-838 B )I(MAKOCTH flpH 
HSMeHeHHR na8JleHHR H TeMnepdTypbI XoVtKOCTH. B YBCTHOCTH. wccnenyeTcB _nBH~eHHe RyJbIpbKOB 

B nOTOKe XHItKOCTW B KaHane npH n~He~HOM yaen~qeH~~ TeMnepaTypbI H yMeHbmeH~n AdEjIeHHR 

(HarpeBdeMblH KaHaJI). “pH JlHHei%HOM CHHmeHHH TeMnePaTypbI (TenJlOO6Me~iHHK) H B KaHd!te, 6 KO- 
TOPOM npoucxonwT rme3anHoe nanemre naBneHHB H nocTeneHHoe yBeneHeHHe TeMnepaTypbr (Harpe- 
BaeMbIir KaXa,, C ~B~eH~eM ~~~dn~paH~B~)). DOJty’%eHbl ~~CneHHbIe ~3ynbTaTbl n0 TeYeHNH, B HarLW 

BaeMOM KaHaJIe patTaopoa HeKOTOpbIX BN.IIOR HHepTHblX I2306 B XWTKOM HaTpHH. 


